Select one of the options below:
Estimation and hypothesis testing methods in linear models, including t-tests, ANOVA, regression, and multiple regression. Residual analyses, transformations, goodness of fit, interaction and confounding. Implementation in R. Requires a background in calculus, linear algebra, inferential statistics and R computing. Students are required to take GSLL 3095 and GSLL 3096 before taking this class.
If you should have any questions about this course offering, please contact Graduate & Online Program Coordinator, Alex Peitsmeyer.
MATH 369 (Linear Algebra I); STAT 315 (Intro to Theory and Practice of Statistics); Admission to the Master of Applied Statistics or admission to the Graduate Certificate in Theory and Applications of Regression Models. Written consent of instructor.
Please check the CSU Bookstore for textbook information. Textbook listings are available at the CSU Bookstore about 3 weeks prior to the start of the term.
Dr. Shaby is an Associate Professor of Statistics at Colorado State University who develops statistical theory and methods to study extreme weather events and high-throughput biological experiments. He works with climate scientists, hydrologists, and wildfire scientists in academia and government to understand and mitigate the risks associated with rare, high-impact events. Dr. Shaby was the recipient of a National Science Foundation CAREER award in 2018 and the American Statistical Association Section on Statistics and the Environment's Early Career Investigator Award in 2016. He completed his Ph.D. at Cornell University in 2009 and held postdoctoral appointments at Duke University and UC Berkeley.